

WESM PRICE DETERMINATION METHODOLOGY Expository Presentation

20 September 2017 MinDA Office, Davao City

OUTLINE

BACKGROUND

DESIGN ENHANCEMENTS

PRICE DETERMINATION METHODOLOGY (PDM) AMENDMENTS

SUMMARY

How is power delivered to customers?

Supply and Demand Balancing

Transition to competitive regime

Electric Power Industry Reform Act (EPIRA)

Declaration of Policy

"(c) Transparent and reasonable prices ... in a regime of free and fair competition ... to achieve greater operational and economic efficiency

(d) To enhance the inflow of private capital and broaden the ownership base of the power generation"

BACKGROUND Scheduling

Interim Dispatch Protocol

- Customers may renominate contracts
 - Real-time variations are addressed by reserves

- capacities may not be fully utilized due to contracts
- Customers with contract deficiencies cannot source from other available generators
- Generation for system security reasons is shouldered by counterparty

Philippine Electricity Market Corporation

BACKGROUND Scheduling

WESM Outside the Market Features > All capacities are optimized to serve Nominate all demand Contract Power Station DU A Generation for system security generation reasons is shared by whole region Submit offers Send Nominate schedules Contract Power Station DU B generation Submit offers NGC Forecast demand Nominate Schedule -Contract Power Station DCC generation based on offers

Benefits of WESM

System-Optimized Schedules

- Current optimization of individual contract portfolios result in suboptimal system generation mix
- WESM optimizes generation cost for whole system

Full Availability of Capacities

- Generators currently only dispatch to serve their counterparties
- In the WESM, generators can be dispatched to serve any demand
- Any generation can be utilized in the WESM to address congestion

Transparent and Shared Security and Reliability Costs

- Security-based dispatch is currently shouldered by counterparties of generators
- In the WESM, costs to address security concerns are made transparent and shared by the whole region

BACKGROUND WESM Scheduling with Mindanao

Trading in the WESM

Milestones

Electric Power Industry Reform Act (EPIRA) (RA 9136) (<i>June 2001)</i>	EPIRA Implementing Rules and Regulations (IRR) (Feb 2002)	Philippine Electricity Market Corporation (PEMC) (Nov 2003)	WESM Market Management System (MMS) (March 2004)	Luzon WESM Commercial Operations (<i>June 2006)</i>	Visayas WESM Commercial Operations (Dec 2010)	Retail Competition and Open Access (June 2013)
Philippine Grid Code	WESM Rules			Price Det. Methodology		
(Dec 2001)	(June 2002)			(June 2006)		
2001	2002	2003	2004	2006	2010	2013

2015	2016	20	17
(Dec 2015)	Enhanced WESM Design Amendments (<i>Oct 2016</i>)	WESM Mindanao Launch (<i>June 2017)</i>	
Central Scheduling of Energy and Reserves	Integration of Preferential Dispatch RE Resources (<i>Jan 2016</i>)	Enhanced WESM Design TOP (<i>June 2017</i>)	Enhanced WESM Design Commercial Operations

Guiding Principles

- Gross Pool
- Locational Marginal Pricing / Nodal Pricing
- <u>Net Settlement</u>
- Energy and Reserve Co-optimization
- Demand Bidding
- <u>Self commitment</u>
- Rules-based

Structure

WESM DESIGN ENHANCEMENTS

WESM DESIGN ENHANCEMENTS

Developments

2013: Market Study conducted by IES

• <u>19 public consultations</u>

2014: Market Study submitted to DOE

2015: DOE Department Circular No. DC2015-10-0015

- Established the guiding principles for the WESM design enhancements
- Mandated amendments to the WESM Rules through the rules change process

2016: DOE Department Circular No. DC2016-10-0014

Approved amendments to the WESM Rules

2017: DOE Department Circular No. DC2017-03-0001

• Approved amendments to the Price Determination Methodology and Constraints Violation Coefficients and Pricing Re-runs Manual

WESM DESIGN ENHANCEMENTS

Purpose

WESM PRICE DETERMINATION METHODOLOGY (PDM) AMENDMENTS

Price Determination Methodology

- Provides the specific details on how the dispatch schedules and locational marginal prices are calculated in the Market Dispatch Optimization Model (MDOM)
 - Includes price substitution methodology in cases of extreme nodal price separation
 - Pricing during market intervention and suspension
- Calculation of settlement amounts net of bilateral contracts

REVISED PDM MANUAL STRUCTURE

Contents

Billing and **Settlement**

Philippine Electricit Market Corporation SM

NSS

(Not approved

yet)

PCRM

SUMMARY OF ENHANCEMENTS TO THE PDM

SUMMARY OF ENHANCEMENTS TO THE PDM

MARKET DISPATCH OPTIMIZATION MODEL (MDOM)

Overview

MDOM MDOM Input – Load Forecast

MDOM MDOM Input – Market Network Model

MARKET DISPATCH OPTIMIZATION MODEL (MDOM)

Overview

MDOM

General Formulation

Objective

- Maximize the value of dispatched load
- While *minimizing cost* of dispatched generation, dispatched reserves, and constraint violations

Subject to

- Energy and reserve requirements
- Transmission system capabilities
- Individual technical capabilities of resources

MDOM

Detailed Formulation of the Objective Function

WESM Rules Clause 3.6.1.3	Mathematical Representation
Maximize value of dispatched load based on dispatch bids, minus	$\sum_{i}^{n} \left\{ \sum_{b}^{E_{D}} [(DB_{b,i})(PDB_{b,i})] \right\}$
Cost of dispatched generation based on dispatched offers	$-\sum_{k}^{E_{G}}[(G_{k,i})(PG_{k,i})]$
Cost of dispatched reserves based on reserves contracted for or when applicable reserve offers	$-\sum_{r}^{N_{R}}\sum_{j}^{E_{R}}[(R_{j, r, i})(PR_{j, r, i})]$
Cost of constraint violation based on the constraint violation coefficients.	$-\sum_{c}^{E_{c}}[(CQ_{c,i})(CP_{c,i})] - \sum CVP \bigg\}$
	be set per node
Subscripts	i – dispatch interval b – demand bid block k – generation offer block j – reserve offer block r – reserve category c – curtailment quantity

MDOM Objective Function

Objective: Maximize Economic Gain

MDOM

Detailed Constraints

a. System Constraints

- i. System power balance
- ii. Reserve region requirements
- iii. Reserve provider capacity cap
- iv. AC power flow, including the network loss model and power flow limits
- v. HVDC flow limit
- vi. Nodal energy balance constraint

b. Generic Constraints

- i. Over-riding Constraints
 - Security Limit
 - Transmission Limit
- ii. Outage schedule
- iii. Contingency list

c. Resource Constraints

- i. Generator resource energy constraint
- ii. Load resource energy constraint
- iii. Reserve resource constraint
- iv. Combined energy and reserve capacity limit
- v. Combined energy and reserve ramping
- vi. Constraints that pertain to the operational modes of generators, loads or similar facilities (e.g., battery energy storage systems, pump storage hydro)

MDOM Sample Constraints

System Power Balance:

Generation = Load + Losses

MDOM

Priority-scheduling

- When restricting dispatch schedules, following hierarchy shall be followed:
 - Market offers of scheduled generating units;
 - Non-scheduled generating units¹;
 - Priority dispatch generating units²; and
 - Must dispatch generating units³.

Plants with capacity less than 0.1% of regional peak demand
FIT-qualified biomass plants
Solar, wind, run-of-river hydro plants

MARKET DISPATCH OPTIMIZATION MODEL (MDOM)

Overview

MDOM

Philippine Electricity Market Corporation

Projections and Real-Time Dispatch (RTD) Timetable

MDOM

Reserves

Categories

Regulation (Secondary) - Raise/Lower
Contingency (Primary & Tertiary) - Raise/Lower

- Reserve Regions
 - o Luzon
 - \circ Visayas
 - o Mindanao

RESERVES

Reserve Categories [Distinction between Raise and Lower Reserves]

SUMMARY OF ENHANCEMENTS TO THE PDM

Overview

- Prices reflecting constraint violation penalties are not settled, and are re-run
- In the current system, high level of PENs issued, and settlement ready prices are ready only at the end of the billing month
- Automatic re-run of prices enable availability of settlement ready prices near real time

Constraint Violation Coefficients

Order	Constraint Violation Coefficient Name	CVC
1	Delayed Contingency Reserve Requirement	100,000
2	Slow Contingency Reserve Requirement	200,000
3	Fast Contingency Reserve Requirement	400,000
4	Nodal Value of Lost Load or Nodal Energy Balance Constraint	800,000
5	System Energy Balance Constraint	1,300,000
6	Self-Scheduled Generation Constraint	1,400,000
7	Thermal Contingency Constraint	2,400,000
8	Regulating Reserve Requirement	2,800,000
9	Transmission Group Constraint	2,900,000
10	Thermal Base Case Constraint	3,000,000

Lowest Priority in Meeting Requirement

Highest Priority in Meeting Requirement

How is it done?

- The automatic pricing re-run of the MDOM shall determine the prices for energy and reserves with relaxed constraints and shall have approximately the same dispatch schedules.
- Shortage and Excess Pricing
 - For under-generation, the shortage price shall be determined as the offer price cap.
 - For over-generation, the excess price shall be determined as the offer price floor.
- Manual re-runs done only for errors due to erroneous input data

Final Price: P 3,000 / MWh (pricing run)

Final Price: P 3,000 / MWh (pricing run)

Timeline

New Process

In real-time

Run RTD - Scheduling run - Pricing run

Publish Final Prices in MPI

List of constraints violated are published in the website the day after

SUMMARY OF ENHANCEMENTS TO THE PDM

Overview

- This methodology addresses occurrence of extreme nodal price separation arising from the effects of network congestion in the power system
- If a dispatch interval is reflective of extreme nodal price separation due to network congestion, then prices shall be substituted for the affected generators and customers.
- Proposed PSM uses the same principles as the original, but ensures that there are settlement ready prices available near real time

Overview

• When is PSM applied?

*PSM will only be triggered if there is congestion on network lines with loop flows

PRICE SUBSTITUTION METHODOLOGY Trigger Factor

Feature	Methodology
Pricing of Generators	Generators dispatched to address congestion (Constrained-On Generators)– Pay-as-Bid
	Other Generators– Unconstrained Market Clearing Price
Pricing of Customers	Single load price is computed in real-time based on the allocation of the estimated total generation cost based on schedule

Example

Participant	Schedule (MW)	Substitute Energy Dispatch Price (PhP / MWh)
G1 (Unconstrained)	50	3,000
G2 (Constrained-on)	232	7,000
G3 (Unconstrained)	24	3,000
Load	300	?

 $Load SEDP = \frac{\sum(SEDP_{Gen} \times Schedule_{Gen})}{\sum Schedule_{Load}}$

Load SEDP = $\frac{50 \times 3,000 + 232 \times 7,000 + 24 \times 3,000}{300}$

Load SEDP = PhP 6, 153/MWh

Example

Comparison of original and substitute prices:

Participant	Schedule (MW)	Original Price (PhP / MWh)	Substitute Energy Dispatch Price (PhP / MWh)
G1 (Unconstrained)	50	4,986	3,000
G2 (Constrained-on)	232	7,000	7,000
G3 (Unconstrained)	24	3,000	3,000
Load	300	9,379	6,153

Timeline

SUMMARY OF ENHANCEMENTS TO THE PDM

Overview

- Administered prices are used when market intervention or market suspension is declared
- Proposed methodology uses the same principles as the current but allows AP prices to be available near real-time
- Further adjustments to the methodology were made on imports from regions, when one region is not under market intervention or suspension

Generator Administered Price

	Su	Мо	Tu	We	Th	Fr	Sa	
Week-4			Hour 09					
Week-3			Hour 09		Adminis	stered p average	rice = W e of sett	leighted- lement prices
Week-2			Hour 09		*Weight	ed using	snapsh	ot quantities
Week-1			Hour 09					
Week			Hour 09					

Interval under suspension / intervention

Generator Administered Price - Example

	Settlement Price	Snapshot	
W	FEDP (PhP/MWh)	SQ (MW)	FEDP× SQ
Week-4	5,670	15	85,050
Week-3	4,438	13	57,694
Week-2	4,149	11	45,639
Week-1	4,140	15	62,100
ТОТ		54	250,483

Administered Price_w =
$$\frac{\sum (FEDP \times SQ)}{\sum SQ}$$

 $\frac{250,483}{54}$

Administered Price_w = PhP 4,639 / MWh

Load Administered Price

Customer Administered Price - Example

Administered $Price_{Load} = PhP 4,822/MWh$

Other features

Case	Methodology
Intervention / Suspension was declared and there is a newly modelled generator	Based on weighted-average price of other administered generators
Reserves	Similar to energy administered price Based on the schedule weighted average of the reserve prices for each reserve category of the 4 most recent similar trading day and similar dispatch intervals that have not been administered.

Regional Application

- The administered price shall be applied in the region where the market suspension or market intervention is declared.
- For this purpose, the regions are Luzon, Visayas and Mindanao.
- If there is an interconnection, the actual flow in the interconnection shall be considered in the customer allocation.

Timeline

SUMMARY OF ENHANCEMENTS TO THE PDM

MUST-RUN UNITS

Overview

- Used address a threat in system security when all available ancillary services have been exhausted
- Criteria:
 - System Voltage Requirement
 - Thermal Limits
 - Real Power Balancing and Frequency Control
- Change in methodology driven by the need to produce settlement ready prices near real-time.

MUST-RUN UNITS

Compensation

- Market price (price taker)
- If necessary, additional compensation to cover variable costs

SUMMARY OF ENHANCEMENTS TO THE PDM

SETTLEMENT CALCULATIONS

Overview

- Changes in the settlement calculations are driven by shortening of dispatch interval and ex ante only pricing, and the amendments to the pricing methodologies
- Resulting amendment provides for settlement calculations that are simplified and uniform
- Reserve cost recovery is included in the PDM

SETTLEMENT CALCULATIONS

Final Energy Dispatch Price (FEDP)

Enhanced

Enhanced – Energy Trading Amount

Enhanced – Energy Trading Amount (Example)

PART	MQ [A]	BCQ [B]	FEDP [C]	FEDP@RefNode [D]	ETA [A. C- B. D]
G1	252	150	3,000	3,000	306,300
G2	103	50	5,000	5,102	259,924
L1	(150)	(150)	3,046	3,000	(6,827)
L2	(200)	(50)	5,102	5,102	(765,230)
				NET	(205,833)

Enhanced – Net Settlement Surplus

Parameter	Proposed
Line Loss and Congestion Cost	Based on actual marginal loss and congestion cost
Cost of Line Loss and Congestion associated with Bilateral Contracts	Accounted to actual payer based on contract delivery point
Generator	Receives NSS if payment is less than the lower clearing price
Load	Receives full NSS if payment is more than the lower clearing price

Enhanced – Net Settlement Surplus

Enhanced – Net Settlement Surplus (Example)

PART	MQ [A]	BCQ [B]	LLCP [C]	LLCP@RefNode [D]	LLCC* [E=AAC-BBD]	NSS Alloc. [NSS E/TOTAL E]
G1	252	150	0	0	0	0
G2	103	50	2,000	2,102	0	0
L1	(150)	(150)	46	0	(6,827)	4,363
L2	(200)	(50)	2,102	2,102	(315,230)	201,470
	5	0			(322,056)	205,833

NSS is allocated to participants with actual payments for congestion

*Only payments are considered (negative value)

SETTLEMENT CALCULATIONS Enhanced

SETTLEMENT CALCULATIONS Enhanced

Energy Settlement Net Energy Trading Settlement Surplus Amount Settlement Amount **Reserve Settlement** Reserve Reserve Cost Trading Recovery Amount Amount

Enhanced – Reserve Trading Amount

Enhanced – Reserve Trading Amount (example)

Enhanced – Reserve Cost Recovery

*MQ - metered quantity

Enhanced – Reserve Cost Recovery (example)

Ex. RDP = PhP 2,500 / MWh

For common block 1 (100 MW), $RTA_{CB1} = 100 \times 2,500 \times 1 / 12 = PhP 20,833$ $RCRA_{CB1} = 20,833 \times 1 / 2 = PhP 10,417$

For common block 2 (150 MW),

 $RTA_{CB2} = 150 \times 2,500 \times 1 / 12 = PhP 31,250$ $RCRA_{CB2} = 31,250 \times 1 = PhP 31,250$

Contingency —	Lower	Pro-rate to loads based on MQ*
---------------	-------	--------------------------------

	Cost (PhP)
CONTINGENCY- LOWER	20,000
(CL COST)	

	Metered Quantity, MQ (MWh)	Cost Recovery Amount (PhP) CUS MQ TOTAL CUS MQ × CL COST
G1	252	N/A
G2	103	N/A
L1	150	(8,571)
L2	20	(11,429)
ΤΟΤ	705	(20,000)

SETTLEMENT AMOUNT

Enhanced WESM Design

SETTLEMENT AMOUNT

Enhanced WESM Design

Settlement Amount

= Trading Amounts +

Other Trading Amounts -

Market Fees

SUMMARY

SUMMARY

FEATURE	DESCRIPTION
Dispatch Interval	5 minutes
Pricing	Ex-ante only
Market Re-runs	Automatic pricing re-runs
Consideration of Pmin	Submitted as offer
Scheduling/ Trading of Energy and Reserves	Co-optimized energy and reserves
Settlements	5-minute metered quantity multiplied by price
Administered Prices	Based on historical prices
PSM Settlement	Based on unconstrained prices
MRU Settlement	Market price plus additional compensation

DAGHANG SALAMAT

mindanao_top@wesm.ph

www.wesm.ph

PRO

Gross pool

Philippine Electricity Market Corporation

• All energy is scheduled through the WESM (i.e., mandatory market)

Philippine Electricity Market Corporation

Locational Marginal Pricing / Nodal Pricing

 Marginal price is computed at each node or location in the power system to reflect transmission line loss or congestion, or both.

Corporation of the Philippines (NGCP)

Philippine Electricity

Market Corporation

Locational Marginal Pricing / Nodal Pricing

 Marginal price is computed at each node or location in the power system to reflect transmission line loss or congestion, or both.

Corporation of the Philippines (NGCP)

Philippine Electricity Market Corporation

Locational Marginal Pricing / Nodal Pricing

 Marginal price is computed at each node or location in the power system to reflect transmission line loss or congestion, or both.

Corporation of the Philippines (NGCP)

Philippine Electricity Market Corporation

Locational Marginal Pricing / Nodal Pricing

 Marginal price is computed at each node or location in the power system to reflect transmission line loss or congestion, or both.

Locational Marginal Pricing / Nodal Pricing

 Marginal price is computed at each node or location in the power system to reflect transmission line loss or congestion, or both.

Net Settlement

- Participants may declare bilateral contract quantities
- Only spot quantity is settled at market price (nodal)

Energy and Reserve Co-optimization

Energy and reserve markets are scheduled separately

Energy and reserve market are optimized together

Advantages of Co-Optimized Reserve Market:

- All available capacities can be seen by the WESM
- Determination of optimal schedules and prices between energy and reserves with the least over-all cost
 - Mitigate artificial under-generation

Demand Bidding

 Customers may submit bids at the price they are willing to pay

Example: I will consume 20 MW if price is below P 10,000 / MWh f price F 10,000 / MWh, schedule

If price < P 10,000 / MWh, schedule to consume 20 MW

NOT to consume 20 MW

Self Commitment

Trading participants are responsible for the management of their *technical operations*, *unit commitment decisions* and *other market risks* through submission of offers to the WESM

GUIDING PRINCIPLES RULES-BASED

Governing rules are applied to all

Date/Venue	Attendees	Agenda
15-18 April 2013 at PEMC Office	DOE, PEMC, NGCP-SO, and other stakeholders (AES-MPPCL, FGP Corporation, First Gas, MERALCO, NPC, PANASIA, PSALM, SNAP, and <u>SPPC</u>)	Phase 1 issues
17-20 June 2013 at PEMC Office	DOE, PEMC, NGCP-SO, and other stakeholders (Aboitiz Power, AES- MPPCL, AP Renewables, Bac-Man, CEDC, CIP II Power Corp., EDC, First Gas, First Gen, GMCP, Green Core, HEDCOR, Luzon Hydro, Northwind, NPC, One Subic Power, PANASIA, PEDC, Petron, SEM-Calaca, SPC Island Power Corp., SMC Global, SNAP, Therma Luzon, Therma Mobile, Toledo Power Company 1590 EC/Vivant)	 Phase 1 find ngs and recommendations Phase 2 issues
12-16 August 2013 at PEMC Office	DOE, GMC, ERC, PEMC, WESM Committees, NGCP-SO, and stakeholders (AES-MPPCL, ALECO, AP Renewables, BENECO, CAGELCO I, CANORECO, CASURECO II, CASURECO IV, CEBECO I, CEC, CELCOR, CENECO, DECORP, GUIMELCO, GN Power, IEEC, ILECO II, ILECO III, INEC, LEYECO, LEYECO II, MERALCO, NEECO, NEECO-Area I, PEDC, San Jose City Electric Cooperative, SMEC, SNAP- Benguet Inc., SNAP-Magat Inc., SPC Island Corporation, TARELCO II, VECO)	Phase 2 find ngs and recommendations
13-15; 19-20 November 2013 at PEMC Office	DOE, ERC, PEMC, WESM Committees, NGCP-SO	Phase 3 recommendations
18 November 2013 Stakeholders Consultation Meeting at the Development Academy of the Philippines	DOE, DMC, GMC, ERC, PEMC, NGCP-SO, and stakeholders (1590 EC, Aboitiz Power, AES Masinloc, Angeles Power, AP Renewables, BATELEC II, BENECO, CAGELCO I, CAGELCO II, CANORECO, CASURECO II, Clark Electric Distribution Corporation, Dagupan Electric Corporation, EAUC, Ecozone Power Management Inc., FLECO, GN Power, Green Core Geothermal Inc., Guimaras Electric Cooperative, INEC, MERALCO, MOPRECO, MPower, NEECO II– Area I, NEECO– Area II, NORECO I, Northern Renewables, PANASIA, Panay Power Corporation, PENELCO, Pilipinas Shell Petroleum Corporation, PERC, PSALM, Samar II Electric Cooperative Inc., SMEC, SEM-Calaca, SNAP-Benguet, South Premier Power Corp., SPC Island Power Corp., SPDC, TARELCO II, Tarlac Electric Inc., Team Energy, Therma Luzon, Therma Mobile, Toledo Power Company, TPEC, VECO, Vivant, VRESCO)	Phase 1, Phase 2, and Phase 3 findings and recommendations